A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements
نویسندگان
چکیده
The flux reconstruction (FR) approach allows various well-known high-order schemes, such as collocation based nodal discontinuous Galerkin (DG) methods and spectral difference (SD) methods, to be cast within a single unifying framework. Recently, the authors identified a new class of FR schemes for 1D conservation laws, which are simple to implement, efficient and guaranteed to be linearly stable for all orders of accuracy. The new schemes can easily be extended to quadrilateral elements via the construction of tensor product bases. However, for triangular elements, such a construction is not possible. Since numerical simulations over complicated geometries often require the computational domain to be tessellated with simplex elements, the development of stable FR schemes on simplex elements is highly desirable. In this article, a new class of energy stable FR schemes for triangular elements is developed. The schemes are parameterized by a single scalar quantity, which can be adjusted to provide an infinite range of linearly stable high-order methods on triangular elements. Von Neumann stability analysis is conducted on the new class of schemes, which allows identification of schemes with increased explicit time-step limits compared to the collocation based nodal DG method. Numerical experiments are performed to confirm that the new schemes yield the optimal order of accuracy for linear advection on triangular grids.
منابع مشابه
Application of High-Order Energy Stable Flux Reconstruction Schemes to the Euler Equations
The authors recently identified an infinite range of high-order energy stable flux reconstruction (FR) schemes in 1D and on triangular elements in 2D. The new flux reconstruction schemes are linearly stable for all orders of accuracy in a norm of Sobolev type. They are parameterized by a single scalar quantity, which if chosen judiciously leads to the recovery of various well known high-order m...
متن کاملA New Class of High-Order Energy Stable Flux Reconstruction Schemes
The flux reconstruction approach to high-order methods is robust, efficient, simple to implement, and allows various high-order schemes, such as the nodal discontinuous Galerkin method and the spectral difference method, to be cast within a single unifying framework. Utilizing a flux reconstruction formulation, it has been proved (for onedimensional linear advection) that the spectral differenc...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملEnergy Stable Flux Reconstruction Schemes for Advection-Diffusion Problems on Tetrahedra
Theflux reconstruction (FR)methodology provides a unifying description ofmany high-order schemes, including a particular discontinuous Galerkin (DG) scheme and several spectral difference (SD) schemes. In addition, the FR methodology has been used to generate new classes of high-order schemes, including the recently discovered ‘energy stable’ FR schemes. These schemes, which are often referred ...
متن کاملAn Extension of Energy Stable Flux Reconstruction to Unsteady, Non-linear, Viscous Problems on Mixed Grids
This paper extends the high-order Flux Reconstruction (FR) approach to the treatment of non-linear diffusive fluxes on triangles. The FR approach for solving diffusion problems is reviewed on quadrilaterals and extended for triangles, allowing the treatment of mixed grids. In particular, this paper examines a subset of FR schemes, referred to as VincentCastonguay-Jameson-Huynh (VCJH) schemes, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012